Upper Key Stage 2 - Years 5 and 6

The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.

At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.

By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages.

Pupils should read, spell and pronounce mathematical vocabulary correctly.

This long term curriculum planning document includes:

- pgs 2-7: programmes of study for the year group including statutory requirements and accompanying notes and guidance (non-statutory). Key objectives for the year group are written in bold.
- pgs 8-9: appendix 1: table of key objectives for the year group taken from the National Curriculum and in a summarised form
- pg 10: appendix 2: overview of progression for the year group

Year 5 programmes of study

The objectives highlighted in bold are considered by the school to be key objectives for the year group. The objectives have been selected either because they represent key content to be covered to allow access to the following year's curriculum, or because it is the only or main time an objective is taught.

Year 5 programme of study (statutory requirements)
Number - number and place value

Pupils should be taught to:

- read, write, order and compare numbers to at least 1000000 and determine the value of each digit
- count forwards or backwards in steps of powers of 10 for any given number up to 1000000
- interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero
- round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000
- solve number problems and practical problems that involve all of the above
- read Roman numerals to 1000 (M) and recognise years written in Roman numerals.

Number - Addition and subtraction

Pupils should be taught to:

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine,

Notes and guidance (non-statutory)

Pupils identify the place value in large whole numbers.
They continue to use number in context, including measurement. Pupils extend and apply their understanding of the number system to the decimal numbers and fractions that they have met so far.
They should recognise and describe linear number sequences, including those involving fractions and decimals, and find the term-to-term rule.
They should recognise and describe linear number sequences (for example, $3,31 / 2,4,41 / 2 \ldots$.$) , including those involving fractions and$ decimals, and find the term-to-term rule in words (for example, add 1/2).

Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency.
They practise mental calculations with increasingly large numbers to aid fluency (for example, $12462-2300=10162$).

in the context of a problem, levels of accuracy

- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Number - Multiplication and division

Pupils should be taught to:

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
- recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the

Pupils practise and extend their use of the formal written methods of short multiplication and short division. They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations.
They use and understand the terms factor, multiple and prime, square and cube numbers.
Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24$ r $2=24 \frac{1}{2} / 2=24.5 \approx$ 25).

Pupils use multiplication and division as inverses to support the introduction of ratio in year 6, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres.

Distributivity can be expressed as $a(b+c)=a b+a c$.
They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10$).

Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, $13+24=12+25 ; 33=5 x$
\square).

- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Number - Fractions (including decimals and percentages)

Pupils should be taught to:

- compare and order fractions whose denominators are all multiples of the same number
- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $2 / 5+4 / 5=6 / 5=11 / 5$]
- add and subtract fractions with the same denominator and denominators that are multiples of the same number
- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- read and write decimal numbers as fractions [for example, $0.71=$ 71/100]
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- round decimals with two decimal places to the nearest whole number and to one decimal place
- read, write, order and compare numbers with up to three decimal places
- solve problems involving number up to three decimal places
- recognise the per cent symbol (\%) and understand that per cent

Pupils should be taught throughout that percentages, decimals and fractions are different ways of expressing proportions.
They extend their knowledge of fractions to thousandths and connect to decimals and measures.
Pupils connect equivalent fractions > 1 that simplify to integers with division and other fractions >1 to division with remainders, using the number line and other models, and hence move from these to improper and mixed fractions.

Pupils connect multiplication by a fraction to using fractions as operators (fractions of), and to division, building on work from previous years. This relates to scaling by simple fractions, including fractions >1.

Pupils practise adding and subtracting fractions to become fluent through a variety of increasingly complex problems. They extend their understanding of adding and subtracting fractions to calculations that exceed 1 as a mixed number.

Pupils continue to practise counting forwards and backwards in simple fractions.

Pupils continue to develop their understanding of fractions as numbers, measures and operators by finding fractions of numbers and quantities.

Pupils extend counting from year 4, using decimals and fractions including bridging zero, for example on a number line.
Pupils say, read and write decimal fractions and related tenths, hundredths and thousandths accurately and are confident in checking the
relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal

- solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 .
reasonableness of their answers to problems.
They mentally add and subtract tenths, and one-digit whole numbers and tenths.

They practise adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 (for example, $0.83+0.17=1$).
Pupils should go beyond the measurement and money models of decimals, for example, by solving puzzles involving decimals.
Pupils should make connections between percentages, fractions and decimals (for example, 100% represents a whole quantity and 1% is $1 / 100$, 50% is $50 / 100,25 \%$ is $25 / 100$) and relate this to finding 'fractions of'.

Pupils use their knowledge of place value and multiplication and division to convert between standard units.
Pupils calculate the perimeter of rectangles and related composite shapes, including using the relations of perimeter or area to find unknown lengths. Missing measures questions such as these can be expressed algebraically, for example $4+2 b=20$ for a rectangle of sides 2 cm and b cm and perimeter of 20 cm .

Pupils calculate the area from scale drawings using given measurements.
Pupils use all four operations in problems involving time and money, including conversions (for example, days to weeks, expressing the answer as weeks and days).

```
- use all four operations to solve problems involving measure [for
example, length, mass, volume, money] using decimal notation,
including scaling.
```


Geometry - properties of shapes

Pupils should be taught to:

- identify 3-D shapes, including cubes and other cuboids, from 2-D representations
- know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles
- draw given angles, and measure them in degrees (${ }^{\circ}$)
- identify:
- angles at a point and one whole turn (total 360°)
- angles at a point on a straight line and $1 / 2$ a turn (total 180°)
- other multiples of 90°
- use the properties of rectangles to deduce related facts and find missing lengths and angles
- distinguish between regular and irregular polygons based on reasoning about equal sides and angles.

Geometry - position and direction

Pupils should be taught to:

- identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.

Pupils become accurate in drawing lines with a ruler to the nearest millimetre, and measuring with a protractor. They use conventional markings for parallel lines and right angles.
Pupils use the term diagonal and make conjectures about the angles formed between sides, and between diagonals and parallel sides, and other properties of quadrilaterals, for example using dynamic geometry ICT tools. Pupils use angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems.

Pupils recognise and use reflection and translation in a variety of diagrams, including continuing to use a 2-D grid and coordinates in the first quadrant. Reflection should be in lines that are parallel to the axes.

Statistics

Pupils should be taught to:

- solve comparison, sum and difference problems using information presented in a line graph
- complete, read and interpret information in tables, including timetables.

Pupils connect their work on coordinates and scales to their interpretation of time graphs.
They begin to decide which representations of data are most appropriate and why.

Appendix 1: Year 5 Key Objectives

	Summarised form
1. interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	1. interpret negative numbers in context
2. read Roman numerals to 1000 (M) and recognise years written in Roman numerals	2. read Roman numerals to 1000, including years
3. recognise and use square numbers and cube numbers, and the notation for squared and cubed	3. recognise and use square and cube numbers, and know the notation
4. use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	4. use rounding to check answers and determine accuracy
5. identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers	5. identify multiples and factors, including finding factor pairs and common factors
6. know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers	6. use vocabulary: prime numbers, prime factors and composite numbers
7. establish whether a number up to 100 is prime and recall prime numbers up to 19	7. know prime numbers to 19
8. multiply and divide whole numbers and those involving decimals by 10,100 and 1000	8. multiply and divide numbers by 10,100 or 1000 , including decimals
9. multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers	9. use long multiplication for multiplying numbers of up to 4 di by one or two digits
10. divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	10. divide numbers using standard written short division
11. recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number	11. convert between
12. compare and order fractions whose denominators are all multiples of the same number	12. compare and order fractions whose denominator are multiples of the same number
13. identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	13. identify, name and write equivalent fractions including and hundredths
14. add and subtract fractions with the same denominator and denominators that are multiples of the same number	14. add and subtract fractions with denominators that are multiples of the same number
15. multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	15. multiply proper fractions and mixed numbers by whole numbers with support
16. read and write decimal numbers as fractions	16. read and write decimal numbers as fractions
17. round decimals with two decimal places to the nearest whole number and to one decimal place	17. round decimals with 2 decimal places to whole numbers or to one decimal place
18. read, write, order and compare numbers with up to three decimal places	18. read, write, order and compare numbers up to 3 decimal places
19. recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator	19. recognise \% symbol and explain as a fraction with denominator 100 (parts out of 100)

Merrydale Junior School - Maths Curriculum 2019 - Yr 5

100, and as a decimal
20. understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints
21. measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres
22. calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes
23. use the properties of rectangles to deduce related facts and find missing lengths and angles
24. distinguish between regular and irregular polygons based on reasoning about equal sides and angles
25. identify 3-D shapes, including cubes and other cuboids, from 2-D representations 26. know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles
27. draw given angles, and measure them in degrees (o)
28. identify angles at a point and one whole turn (total 3600); angles at a point on a straight line and $1 / 2$ a turn (total 180o)
29. identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed 30. complete, read and interpret information in tables, including timetables
20. understand and use common approximate conversions between metric and imperial
21. measure and calculate the perimeter of composite rectilinear shapes
22. calculate the area of rectangles, and estimate the length of irregular shapes
23. use the properties of rectangles to find missing lengths and angles
24. distinguish between regular and irregular polygons
25. identify 3-D shapes from 2-D representations
26. know angles are measured in degrees and compare acute, obtuse and reflex angles
27. draw and measure angles to the nearest degree
28. identify angles at a point, in a turn and on a straight line
29. describe and represent the result of a reflection or translation
30. complete, read and interpret information in tables, including timetables

Merrydale Junior School - Maths Curriculum 2019 - Yr 5

Appendix 2: Overview of Progression in Year 5

Number and place value

Children work with numbers up to at least $1,000,000$, using knowledge of place value to work out the value of digits. They continue working with negative numbers in different contexts, and practise reading Roman numerals to $1000(\mathrm{M})$, which helps them work out years written in Roman numerals. They continue using techniques introduced in earlier years for approximation and estimation.

Addition and subtraction

Children use columns in written addition and subtraction, accurately adding and subtracting numbers with more than four digits. They use mental methods to add and subtract increasingly large numbers, and use rounding to check their answers. With support they choose appropriate operations and methods, and work out the level of accuracy required to answer a particular problem. They will continue to develop this work in Year 6.

Multiplication and division

Children identify multiples and factors, and find all the factor pairs of a given number. With support, they use factors to help solve multiplication and division problems involving larger numbers, and they confidently use written methods to multiply and divide large numbers. They extend their mathematical vocabulary and understanding, beginning to work with prime numbers, prime factors, composite (non-prime) numbers, square and cubed numbers.

Fractions (including decimals and percentages)

Children compare fractions with denominators that are multiples of the same number (comparing $3 / 7$ with $6 / 14$). They also identify equivalent fractions of a given fraction including tenths and hundredths. They learn about mixed numbers and improper fractions, and understand how mixed numbers could be converted to improper fractions, and vice versa. With support and using practical equipment and diagrams, they multiply proper fractions and mixed numbers by whole numbers.

Children convert decimal numbers into fractions $(0.65=65 / 100)$. Extending their work from previous years, they use thousandths and make connections between these and tenths, hundredths and their decimal equivalents. They round decimals to the nearest whole number, and to one decimal place, and begin to work with numbers with three decimal places. Children begin to work with percentages and find solutions to problems using percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$, for example. This forms a basis for further work on percentages in Year 6.

Measurement

In Year 4, children calculated the perimeter of rectilinear shapes; they now extend this to composite (or compound) rectilinear shapes, and calculate the area of squares and rectangles. They begin to understand and estimate volume and capacity, and compare metric with common imperial units. They will build on this work in Year 6.

Geometry: properties of shapes

Children extend their work on angles from Year 4, estimating, measuring, comparing and drawing a variety of angles using degrees. They use given dimensions to help them draw shapes accurately, and use techniques learnt in the context of missing number problems to help them work out missing angles.

Geometry: position and direction

Building on work with coordinate grids from Year 4, children work out the position of shapes following reflection or translation, in the first quadrant.
Statistics In Year 4, children were introduced to line graphs; now they use information from line graphs to solve problems. They practise completing and reading tables, including timetables

